EIA法によるIgAクラス抗HEV抗体測定用キット
本試薬は，添付文書をよく読んでから使用してください。

［全般的な注意】

1．本キットは体外診断用であり，それ以外の目的に使用しない でください。
2．診断は他の関連する検査結果や臨床症状等に基づいて総合的 に判断してください。
3．本添付文書に記載された使用方法に従って使用してください。記載された使用目的及び用法•用量以外での使用については，測定結果の信頼性を保証しかねます。
4．本キット中の陰性コントロール及び陽性コントロールはHBs抗原，HCV抗体，HIV－1 抗体及びHIV－2 抗体が陰性であること を確認していますが，感染性を完全に否定できるものではあ りません。従って，本品の取扱いに際しては，検体と同様に感染の危険性を考慮し，十分に注意してください。
5．使用する機器の添付文書又は取扱説明書をよく読んでから使用してください。

【形状•構造等（キットの構成）】

1．HEV 抗原固相プレート（ 8 ウェル×12）…．．．．．．．．．．．．．．． 1 枚 （リコンビナント HEV抗原）
2．陰性コントロール …．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $0.5 \mathrm{~mL} \times 1$ 本
3．陽性コントロール …．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $0.5 \mathrm{~mL} \times 1$ 本
4．検体希釈液 …．．． $50 \mathrm{~mL} \times 1$ 本
＊＊ 5 ．酵素標識モノクローナル抗体 …．．．．．．．．．．．．．．．．．． $5 \mathrm{~mL} \times 1$ 本 （ペルオキシダーゼ標識抗ヒトIgAマウスモノクローナル抗体）
6．酵素基質液……．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $5 \mathrm{~mL} \times 1$ 本 （テトラメチルベンチジン，過酸化水素）
7．反応停止液 …．． $5 \mathrm{~mL} \times 1$ 本
8．洗浄原液（ 20 倍滞縮液）……．．．．．．．．．．．．．．．．．．．．． $50 \mathrm{~mL} \times 1$ 本
付属品：プレートシール …．．． 3 枚

【使用目的】

血清中のIgAクラス抗 HEV抗体の検出（E型肝炎ウイルス（HEV）感染の診断の補助）

【測定原理】

酵素免疫測定法（EIA）を応用した本検出系は，二段階の抗原抗体反応と酵素呈色反応とからなります。 1 次抗原抗体反応は， プレートに固相された HEV抗原と被検検体中の抗 HEV抗体との間で起こります。 2 次抗原抗体反応は，固相抗原に結合した $\operatorname{Ig} A$ クラスの抗 HEV抗体と酵素標識抗体（ペルオキシダーゼ標識抗 ヒトIgAマウスモノクローナル抗体）との間で起こります。検体中に IgA クラス抗 HEV抗体が存在すれば 1 次， 2 次抗原抗体反応が成立し，酵素反応により発色します。検体中のIgAクラスの抗 HEV抗体量に応じて呈色物質が生成されます。一定時間で反応を停止させて吸光度を測定します。

【操作上の注意】

1．測定試料の性質，採取法
（1）探血は溶血を避け，速やかに血清分離を行ってください。
（2）検体は，探取後できるだけその日のうちに使用してくだ さい。もし，保存が必要な場合は凍結して保存し，凍結融解の繰り返しは避けてください。
（3）検体は希釈後， $2 \sim 8{ }^{\circ} \mathrm{C}$ で 14 日間保存可能です。
（4）被検検体を冷藏，冷凍保存した場合は室内温度に戻して から使用してください。
2．妨害物質－妨害薬剤
乳ビ 1,500 度（ホルマジン濁度数），ビリルビンC $15 \mathrm{mg} / \mathrm{dL}$ ，
ビリルビンF $15 \mathrm{mg} / \mathrm{dL}$ ，溶血へモグロビン $400 \mathrm{mg} / \mathrm{dL}$ ，リ
ウマチ因子 $400 \mathrm{IU} / \mathrm{mL}$ の濃度までは影響がありません。
3．その他
（1）測定器具の精度を確認し，各器具の操作法に従い測定し てください。
（2）検査に用いる器具は，よく洗浄し，精製水でよく濯いだ ものを使用してください。
（3）検体ごと及び試薬ごとにマイクロピペットのチップを替 えてください。
（4）ブランク用及び陰性，陽性コントロール用ウェルは，測定ごとに設けてください。
（5）操作開始後は定められた時間で速やかに全操作を行い，各検体の反応時間が一定になるように留意してください。
（6）各反応は $15 \sim 30^{\circ} \mathrm{C}$ の範囲で行ってください。
（7）酵素反応停止後， 30 分以内に吸光度を測定してください。
（8）操作中，プレートを強くこすったり，底面に触れたりし ないでください。また，ウェル内面が乾燥しないように注意してください。

【用法•用量（操作方法）】

1．試薬の調製方法
（1）洗浄液
洗浄原液を精製水で 20 倍希釈してください。 $15 \sim 25^{\circ} \mathrm{C}$ で調製時より7日間は使用可能です。
－キットの試薬は使用前に必ず $15 \sim 30^{\circ} \mathrm{C}$ に戻してくださ い。
－プレートは着脱式で 12 分割が可能ですから，必要数を使用し未使用のものは乾燥剤とともにアルミ袋に密封し，
$2 \sim 10{ }^{\circ} \mathrm{C}$ で保存してください。
2．必要な器具•器材•試料等
（1）マイクロピペット $10 \mu \mathrm{~L}, ~ 100 \mu \mathrm{~L}, ~ 200 \mu \mathrm{~L}, ~ 1,000 \mu \mathrm{~L}$
（2）メスシリンダー 1 L
（3）マイクロブレートミキサー
（4）アスピレーター及びポリ洗浄瓶又はマイクロプレートウ オッシャー
（5）暗箱（暗い戸棚又は引き出しでも可）
（6）マイクロプレートリーダー（主波長 450 nm （或いは 440 $\mathrm{nm} \sim 460 \mathrm{~nm})$ ，副波長 630 nm ）

3．測定（操作）法
測定ごとにブランク用1ウェル以上，陰性コントロール用 2 ウェル以上及び陽性コントロール用 2 ウェルを設けてくださ い。（図1：参考例）

図 1

（1）検体の希釈
検体希釈液を用いて検体を 101 倍に希釈します。例えば，検体希釈液 $500 \mu \mathrm{~L}$ に血清 $5 \mu \mathrm{~L}$ を加えます。
（2）検体の添加
陰性コントロール，陽性コントロール及び希釈した検体 を $50 \mu \mathrm{~L}$ ずつ HEV抗原固相プレートのウェルに添加しま す。
（3） 1 次反応
プレート上面に添付のプレートシールを貼り， $15 \sim 30^{\circ} \mathrm{C}$ で1時間静置します。
（4）洗浄
プレートシールをはがし，ウェル内容物をアスピレータ ーで吸引除去します。プレートの各ウェルを洗浄瓶を用 いて「1．試薬の調製方法（1）」で調製した洗浄液で満た し，プレートを逆さにして洗浄液を振り流します。この洗浄操作を5回繰り返します。
また，マイクロプレートウォッシャーを用いる場合も5回洗浄します。
－洗浄操作中，プレートのウェル内面が乾燥しないように注意し，洗浄終了後は迅速に次の操作を行ってください。
（5）酵素標識モノクローナル抗体の添加
酵素標識モノクローナル抗体をブランクウェル以外のウ エルに $50 \mu \mathrm{~L}$ ずつ加えます。
（6） 2 次反応
プレート上面に添付のプレートシールを貼り， $15 \sim 30^{\circ} \mathrm{C}$ で 1 時間静置します。
（7）洗浄
（4）と同じ手順でプレートを洗浄します。
（8）酵素基質液の添加
酵素基質液を全ウェルに $50 \mu \mathrm{~L}$ ずつ加えます。
（9）酵素反応
プレート上面に添付のプレートシールを貼り，プレート を暗所に入れて， $15 \sim 30^{\circ} \mathrm{C}$ で 30 分間静置します。
（10）反応停止液の添加
プレートシールをはがし，反応停止液を全ウェルに $50 \mu \mathrm{~L}$ ずつ加えてよく混合します。
（11）吸光度の測定
マイクロプレートリーダー（主波長 450 nm （或いは440 $\mathrm{nm} \sim 460 \mathrm{~nm}$ ），副波長 630 nm ）で各ウェルの吸光度を測定します。

ウェルの割付と手順

		プランク	院性コントロール・ 路性コントロール	検体
	ウェルの割付	1A，1B	$1 \mathrm{C} \sim 1 \mathrm{~F}$	$1 \mathrm{G} \sim 12 \mathrm{H}$
1	椮体の希积		そのまま使用	検体希积液で 101 倍に希积
2	コントロール及び検体の添加 险性コントロール 陽性コントロール 希积検体		$\begin{aligned} & 50 \mu \mathrm{~L} \\ & 50 \mu \mathrm{~L} \end{aligned}$	$50 \mu \mathrm{~L}$
3	1 次反店			
4	洗浄	5 回繰り返し		
5	榡素標軄モノクローナル抗体の添加		$50 \mu \mathrm{~L}$	$50 \mu \mathrm{~L}$
6	2 次反店	$15 \sim 30^{\circ} \mathrm{C}, ~ 1$ 時間静縝		
7	洗浄	5回繰り透し		
8	楢素基質液の淰加	$50 \mu \mathrm{~L}$		
9	瞵素反他	$15 \sim 30{ }^{\circ} \mathrm{C}, ~ 30$ 分間 暗所勧䈌		
10	反店停止液の添加	$50 \mu \mathrm{~L}$		
11	吸光度の测定	主波長 $450 \mathrm{~mm}(440 \mathrm{~nm} \sim 460 \mathrm{rm})$ ，婮波長 630 nm		
12	結果の判定			

【測定結果の判定法】

1．カットオフ値（COV）の算出
（1）［各吸光度値一ブランクウェルの吸光度の平均値］（Net OD 値）を算出します。
（2）次式に当てはめカットオフ値を算出します。算出カットオフ値＝（陽性コントロールの平均 Net OD 値 －陰性コントロールの平均 Net OD 値）$\times 0.5$
2．結果の判定
陰性：検体の Net OD 値＜算出カットオフ値
陽性：検体の Net OD 値 \geqq 算出カットオフ値
※算出カットオフ値（COV）を基にカットオフインデックス （COI）を算出し，判定することもできます。 $\mathrm{COI}=$ 検体の Net OD 値／COV
陰性：$\quad \mathrm{COI}<1$
陽性：COI $\geqq 1$
3．判定上の注意
（1）測定結果が陰性であっても，ウイルス関連抗体が検出さ れない空白期間である場合や免疫機能低下により抗体産生能が低下している場合があります。
（2）自己免疫性疾患患者の血清の場合，非特異反応が起こり えますので，測定結果に基づく診断は他の検査や臨床症状等を考慮して総合的に判断してください。

［臨床的意義］

E型肝炎ウイルス（HEV）は急性或いは劇症E型肝炎の起因ウイ ルスです。従前，HEVは衛生環境が整っていない熱帯•亜熱帯の発展途上国に常在するウイルスであり，日本を含む先進国では， E 型肝炎は輸入感染症としてのみ散発発生すると認識されていま した。しかし，近年，流行国への渡航歴のないE型肝炎症例が日本を含む先進国で少なからず発生し，ブタなどの動物でも感染が認められる人獣共通感染症であることが明らかにされました1）。 それらの事実を踏まえ，わが国では，E型肝炎は平成15年11月 5日から施行された改正感染症法において新 4 類感染症に指定さ れ，届出が義務づけられています。
本キットは，リコンビナント HEV抗原タンバク質を使用した，血清診断法に基づくIgAクラス抗 HEV 抗体測定試薬であり，IgM クラス抗 HEV 抗体検出系よりも非特異反応による偽陽性が少なく， かつ良好な感度を有しています 2$) ~ 。 ~$

E型肝炎は，A型肝炎ウイルスやB型肝炎ウイルス，C型肝炎ウ イルスなどによる他の急性肝炎との臨床的な区別が難しく，適切 な診断を行うには血清学的検査が重要な手段となります。E型肝炎の急性期には，IgAクラス抗 HEV抗体が患者血清中に出現し， ほとんどの場合において発症時に検出が可能です。多くの場合， HEV RNA は発症後 $1 \sim 6$ 週（平均 3 週）で検出限度以下となりま すが，IgAクラス抗 HEV抗体は，同じく感染初期抗体であるIgM クラス抗 HEV抗体と同様に発症後 2 ヶ月から 5 ヶ月持続します3）。 1．標的疾患

本品はIgAクラス抗 HEV 抗体を測定することにより，E型急性肝炎の診断を可能とします。

2．有病正診率及び無病正診率
本キットと臨床診断（臨床症状，肝機能検査及び HEV RNA
検出による診断）との相関は以下のとおりです。

		覧床診断	
		E型急珄盰炎患者検体	觡常人
本キット	謁珄	92	0
	陉性	$2^{\text {\＃}}$	1，001
合計		94	1，001

有病正診率： 97.8%
焦病正診事： 100%
苟断効率：99．8 \％
蔡本キットで㻇性と判定されたE型急珄肝炎患者検体のデータを以下に示します。これら 2 検体は，ウイルス核酸が检出されウイルス血在の状態にあって6，ウイルス関連抗体 が検出されない感染初期の空白期间の検体であった可能性が考えられます。
＊＊本キットで侩性であったE型急性肝炎患者検体のデータ

検体	本キットでの㨽定値 （Net $\mathrm{OD}_{\text {eso }}$ ）	発症から の日数	眕断名	$\begin{gathered} \mathrm{ALT} \\ (\mathrm{IU} / \mathrm{mL}) \end{gathered}$	$\begin{aligned} & \text { HEV } \\ & \text { RNA } \end{aligned}$	䢙伝子型	他の即炎 の否定
1	0．340（ - ）	0	急珄研炎	2，940	＋	3	Non－A，B，C
2	0．188（－）	3	急性肝炎	5，860	$+$	4	Non－A，B，C

【性能】

1．感度試験
陰性コントロールを試料として 5 回測定するとき，その平均 Net OD 値は，0．1 以下である。
陽性コントロールを試料として 5 回測定するとき，その平均 Net OD 値は， $0.9 \sim 1.8$ の範囲内である。
2．特異性試験
抗 HEV抗体険性管理用検体を試料として5回測定するとき，陰性を示す。
抗 HEV抗体陽性管理用検体を試料として5回測定するとき，陽性を示す。
3．同時再現性試験
抗 HEV 抗体陰性管理用検体を試料として5回同時測定する とき，すべて陰性を示す。
抗 HEV 抗体陽性管理用検体を試料として5 回同時測定する とき，すべて陽性を示す。
4．カットオフ値
本キットの参考カットオフ値：0．639（自社検討データ）

【使用上又は取扱い上の注意】

1．取扱い上（危険防止）の注意
（1）検体は HBV，HCV，HIVなどの感染の危険性があるもの として注意して取り扱ってください。検査にあたっては感染の危険を避けるために使い捨て手袋を着用し，また口によるピペッティングを行なわないでください。
（2）酵素基質及び反応停止液は皮膚や粘膜に接触させないで ください。もし皮虏にかかったときは多量の水で洗い流 してください。（毒性，剌激性で火傷のおそれがありま す。）必要があれば医師の手当等を受けてください。
2．使用上の注意
（1）本品は谏結を避け，貯蔵方法に従い保存してください。
（2）使用期限を過ぎた試薬は使用しないでください。
（3）製造番号の異なるキットの試薬を組み合わせて使用しな いでください。また，同一製造番号の試薬であっても，試薬を注ぎ足さないでください。プレートの再利用をし ないでください。
（4）キットの構成試薬は，いずれも個別の補充が可能です。補充に関しては，問い合わせ先までご連絡ください。
（5）試薬が微生物に汚染されないよう注意してください。

3．廃案上の注意
（1）使用後の検体，試薬，検体に使用した器具類は廃裹前に下記のいずれかの方法で処理を行ってください。
（1） $0.05 \mathrm{w} / \mathrm{v} \%$ ホルマリン溶液に $37^{\circ} \mathrm{C}$ ， 72 時間以上浸す。
（2） $2 \mathrm{w} / \mathrm{v} \%$ グルタルアルデヒド溶液に 1 時間以上浸す。
（3）次亜塩素酸ナトリウム溶液（有効塩素浱度 $1,000 \mathrm{ppm}$以上）に1時間以上浸す。
（4） $121^{\circ} \mathrm{C}, ~ 20$ 分間以上オートクレーブにかける。
（2）検体希釈液，陰性コントロール及び陽性コントロールに はアジ化ナトリウムが添加されていますので，廃棄する時は爆発性の金属アジドが発生しないように多量の水を流しながら行ってください。
（3）試薬及び器具等を廃棄する場合には，医療廃楽物等の廃楽物の処理及び清掃に関する法律，水質汚濁防止法等の規制に従って処理してください。
（4）検体，廃液等が飛散した場合には，次亜塩素酸ナトリウ ム溶液（有効塩素濃度 $1,000 \mathrm{ppm}$ 以上， 1 時間以上浸漬）， グルタルアルデヒド（ $2 \mathrm{w} / \mathrm{v} \%$ ， 1 時間以上浸潰）等に よる拭き取りと消毒を行ってください。

【貯藏方法 •有効期間】

凍結を避け，2～10 ${ }^{\circ} \mathrm{C}$ で保存。製造後 1 年間有効。（包装に表示 の使用期限内に使用してください。）

【包装単位】

96 テスト（CODE：1A71）

【主要文献】

1）Mizuo H，Suzuki K，Takikawa Y，et al ：Polyphyletic strains of hepatitis E virus are responsible for sporadic cases of acute hepatitis in Japan．J Clin Microbiol $40: 3209-3218,2002$.
2）飯野四郎，狩野吉康，前久保博士，他：E型急性肝炎の血清診断におけるIgA クラス抗 HEV抗体測定用試薬「イムニス IgA anti－HEV EIA」の有用性の検討．医学と薬学 53（4）：461－ 469， 2005.
3）Takahashi M，Kusakai S，Mizuo H，et al：Simultaneous detection of immunoglobulin A（IgA）and IgM antibodies against hepatitis E virus（HEV）is highly specific for diagnosis of acute HEV infection．J Clin Microbiol 43 ：49－56， 2005.

【問い合わせ先】

株式会社 特殊免疫研究所 営業部
〒 112－0004
東京都文京区後楽一丁目1番10号
日本生命水道橋ビル
TEL 03－3814－4081 FAX 03－3814－5957

